Data-Intensive Distributed
 Computing
 CS431/451/631/651

Module 5 - Analysing Graphs

Structure of the Course

"Core" framework features and algorithm design

What's a Graph

- $G=(V, E)$ (set of vertices and set of edges)
- Direction:
- Undirected - edge (u, v) implies edge (v, u)
- Directed - edge (u, v) does not imply edge (v, u)
- Edges may or may not be labelled
- (Numerical labels are usually called "weights")
- This should not be news to anybody!

Vocab Reminders

- Vertex (or "node") - The circle thingies
- Edge (or "link") - connects one Vertex to another
- (Or to itself, perhaps)
- If there is edge (u, v) then:
- v is an "out-neighbour" of u
- u is an "in-neighbour" of v
- In-Degree(v) - how many edges lead into v
- Out-Degree(v) - how many edges lead out from v

Example Graphs

- Roadways, Water mains, power lines, other SimCity things.
- Social Networks (a person is a vertex, edges are "friends")
- Actual computer networks
- The internet (just a big network, innit?)

Most graphs are sparse: number of edges is closer to |V| than it is to $|\mathrm{V}|^{2}$

Representation

In the past you've probably seen three representations

- Adjacency Matrix
- Adjacency List
- Edge List

Adjacency Matrix

An nxn matrix M.
$M_{i j}=1$ iff there's an edge between v_{i} and v_{j}
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
$\begin{array}{lllll}1 & 0 & 1 & 0 & 1\end{array}$
$\begin{array}{lllll}\mathbf{2} & 1 & 0 & 1 & 1 \\ \mathbf{3} & 1 & 0 & 0 & 0 \\ \mathbf{4} & 1 & 0 & 1 & 0\end{array}$

Adjacency Matrix

PRO:

- Who doesn't love a matrix?
- Useful for mathematical operations
- CUDA loves matrix operations
- Fast neighbourhood check (both in and out)

CON:

- Mostly Os in a sparse graph (wasted space)
- $O(n)$ to find neighbourhood of v (in and out)

Adjacency List

Row i is a list of the out-neighbours of vertex v_{i}

Adjacency List

PRO

- Smaller than the matrix (especially for small graphs)
- Even easier to find out-neighbours of v (directly stored)

CON

- Difficult to find in-neighbours of v
- have to search all other adjacency lists

Edge List

- Just a list of all the edges

	1				$(1,2)$
	1	2	3	4	$(1,4)$
1	0	1	0	1	$(2,1)$
2	1	0	1	1	$(2,3)$
3	1	0	0	0	$(2,4)$
4	1	0	1	0	$(3,1)$
					$(4,3)$

Edge List

PRO

- Easy to add an edge (just append)
- Simple

CON

- Hard to find neighbours
- Hard to find anything, really

Graph Problems

- Shortest Path - Google Maps, Delivery Planning
- Minimum Spanning Tree - Utility Lines
- Min-Cut - Utility Lines, Disease Spread
- Max-Flow - Airline scheduling
- Graph Colouring - Planning Final Exams
- Bi-Partite Matching - Dating Sites
- PageRank - Google

What does the web look like?

- 4.77 billion pages - 50 billion (vertices)
- It changes by a lot every day
- 100 billion - 1 trillion links (directed edges)

Sources: worldwidewebsize.com, Tilburg University Research
That's big

Power laws again:
Fraction of pages that have k links:

$$
P(k) \sim k^{-\gamma}
$$

So when you say big, you mean...

60+GB
The web graph is Big Data ${ }^{\text {TM }}$

Clearly, we need Hadoop!

How do we do this on MapReduce (or Spark)?

Graphs and Clusters

Many graph algorithms involve:

- Local Computations for each node
- Propagating these results to neighbours (graph traversal)

Questions:

1. Which representation fits the best?
2. How do the local computations work?
3. How does the traversal work?

Answer Key

- (Dan hopes there was some discussion there)
- Local computation means INDEPENDENT
- Sounds very much like a map-like task
- Adjacency List makes the most sense
- KVP - key is a vertex, value is its adjacency list
- Propagation
- Shuffle - Collecting the propagated messages is reduce-like

Single-Source Shortest Path

Problem: Find the shortest path from a single node (source) to all other nodes
(shortest might mean
 fewest links, or lowest total weight)

Dijkstra's Algorithm

- You 100\% have seen this in CS240 or CS234, don't even pretend Step 1

Set all nodes as unvisited, with D = infinity
Set source node's D to 0
Step 2
Let v be the unvisited node with lowest distance
For all out-neighbours u of v :
$D[u]=\min (D[u], D[v]+e d g e(v, u) \cdot$ weight $)$

Dijkstra's Algorithm Example

Dijkstra on MapReduce

Not Parallel ©

Why?

- "Minimum D" - not local

So instead, we use:

- Parallel Breadth-First Search (pBFS)

Simple Case - Unweighted Graph

Want the fewest "hops" from source to destination

Inductive Definition

- $\operatorname{dist}(\mathrm{s})=0$
- $\operatorname{dist}(\mathrm{v})=1$ if there is an edge from s to v
- $\operatorname{dist}(\mathrm{v})=1+\min _{\mathrm{u}}(\operatorname{dist}(\mathrm{u})$) (for all u s.t. there is an edge $\mathrm{u}->\mathrm{v}$)

Simple Case - Unweighted Graph

- Iteration
$\cdot 0$
$\cdot 1$
$\cdot 2$
$\cdot 3$

Implementation on Hadoop

Keys - node n
Values - (d -- distance to n , adjacency list of n)

Mapper:
for m in adjacency list, emit ($m: d+1$)
also emit (n : d)
Reducer:
Update distance to node n based on (m : dist) messages from mapper

Iteration

To iterate, the output of the reducer gets passed to another (identical) job as the input.

How? Isn't the adjacency list gone?

UGH. Yes. OK, so...also emit the adjacency list...

Pseudocode

```
def map (id, node):
    emit(id, node)
    for m in node.adjList:
        emit(m, node.d + 1))
```

def reduce (id, values):
d = infinity
node = None
for o in values:
if isNode(o):
node $=0$
else:
$d=\min (d, o)$
node. $d=\min ($ node. $d, d)$
emit(id, node)

MapReduce Iteration

1. Do the job
2. If we need to keep going, make a new job that reads the output from the last job
3. See step 1

What's the issue here?

Quitting Time

- The most important part of recursion is knowing when to stop
- The second most important part of recursion is knowing when to stop
- The third most important part of recursion is knowing when to stop

Kevin Bacon

- All nodes with min distance of k are "visited" in iteration k
- Why? Did you not see the colourful diagram???
- So how many to search the entire graph?
-6?

Frontier size during BFS traversal

Pseudocode (Weighted Edges)

```
def map (id, node):
    emit(id, node)
    for m in node.adjList:
        emit(m.id, node.d + m.w))
```


Weighted Edges, Termination

- You can still update a note after you first "discover" it
- Fuzzy Frontier
- Stopping condition unchanged
- Stop when no changes
- More iterations needed
- Could be a lot more

BFS vs Dijkstra

- Dijkstra only investigates the lowest-cost node on the frontier
- Parallel BFS investigates all paths in parallel
- It's a simple optimization to restrict to the frontier
- But you're still sending the adjacency list back and forth
- Can we do better on MapReduce?

Issues with MapReduce Iteration

Everything is written to HDFS, then loaded again

We must send the entire graph structure to the reducers each iteration, only to have them send it back again

MapReduce

Spark

Something Borrowed

- Next Slides are thanks to Jure Leskovec, Anand Rajaraman, Jeff Ullman (Stanford University)

Web as a Directed Graph

Who to trust?

Query: University of Waterloo

Ranked retrieval fails!

Web Search Challenge

- Web contains many sources of information Who to "trust"?
- Trick: Trustworthy pages may point to each other!

Ranking Nodes on the Graph

- All web pages are not equally "important" www.joeschmoe.com vs. www.stanford.edu
- There is large diversity in the web-graph node connectivity. Let's rank the pages by the link structure!

PageRank:
 The "Flow"
 Formulation

Links as Votes

- Idea: Links as votes
- Page is more important if it has more links
- In-coming links? Out-going links?
- Think of in-links as votes:
- www.stanford.edu has 23,400 in-links
- www.joeschmoe.com has 1 in-link
- Are all in-links equal?
- Links from important pages count more
- Recursive question!

Example: PageRank Scores

Simple Recursive Formulation

- Each link's vote is proportional to the importance of its source page
- If page j with importance r_{j} has n out-links, each link gets r_{j} / \mathbf{n} votes
- Page j's own importance is the sum of the votes on its in-links

PageRank: The "Flow" Model
 - Define a "rank" r_{j} for page j

"Flow" equations:

$$
\begin{aligned}
& r_{y}=r_{y} / 2+r_{a} / 2 \\
& r_{a}=r_{y} / 2+r_{m} \\
& r_{m}=r_{a} / 2
\end{aligned}
$$

Solving the Flow Equations

- 3 equations, 3 unknowns, no constants

Flow equations:

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{y}}=\mathrm{r}_{\mathrm{y}} / \mathbf{2}+\mathrm{r}_{\mathrm{a}} / 2 \\
& \mathbf{r}_{\mathrm{a}}=\mathrm{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{m}} \\
& \mathbf{r}_{\mathrm{m}}=\mathrm{r}_{\mathrm{a}} / 2
\end{aligned}
$$

No unique solution

- All solutions equivalent modulo the scale factor
- Additional constraint forces uniqueness:
- $r_{y}+r_{a}+r_{m}=1$
- Solution: $r_{y}=\frac{2}{5}, r_{a}=\frac{2}{5}, r_{m}=\frac{1}{5}$
- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs
- We need a new formulation!

PageRank: Matrix Formulation

- Stochastic adjacency matrix \boldsymbol{M}
- Let page i has d_{i} out-links
- If $i \rightarrow j$, then $M_{j i}=\frac{1}{d^{\prime}}$ else $M_{j i}=0$
- \boldsymbol{M} is a column stochastic matrix
- Columns sum to 1

	y	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

PageRank: How to solve?

- Power Iteration:
- Set $r_{j}=1 / N$
- $1: r^{\prime}{ }_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- 2: $r=r^{\prime}$
- Goto 1

	y		a
m			
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	1
m	0	$1 / 2$	0

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{y}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{a}} / 2 \\
& \mathbf{r}_{\mathrm{a}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{m}} \\
& \mathbf{r}_{\mathrm{m}}=\mathbf{r}_{\mathrm{a}} / 2
\end{aligned}
$$

- Example:

$$
\left(\begin{array}{l}
r_{\mathrm{y}} \\
\mathrm{r}_{\mathrm{a}} \\
\mathrm{r}_{\mathrm{m}}
\end{array}\right)=\begin{gathered}
1 / 3 \\
1 / 3 \\
1 / 3
\end{gathered}
$$

Iteration $0,1,2, \ldots$

PageRank: How to solve?

- Power Iteration:
- Set $r_{j}=1 / N$
- 1: $r^{\prime}{ }_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- 2: $r=r^{\prime}$
- Goto 1

	y		a
m			
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	1
m	0	$1 / 2$	0

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{y}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{a}} / 2 \\
& \mathbf{r}_{\mathrm{a}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{m}} \\
& \mathbf{r}_{\mathrm{m}}=\mathbf{r}_{\mathrm{a}} / 2
\end{aligned}
$$

- Example:
\(\left(\begin{array}{l}r_{y}

r_{a}

r_{m}\end{array}\right)=\)| $1 / 3$ | $1 / 3$ | $5 / 12$ | $9 / 24$ | | $6 / 15$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $1 / 3$ | $3 / 6$ | $1 / 3$ | $11 / 24$ | \ldots | $6 / 15$ |
| $1 / 3$ | $1 / 6$ | $3 / 12$ | $1 / 6$ | | $3 / 15$ |
| Iteration $0,1,2, \ldots$ | | | | | |

Random Walk Interpretation

- Imagine a random web surfer:
- At any time \boldsymbol{t}, surfer is on some page \boldsymbol{i}
- At time $\boldsymbol{t}+\mathbf{1}$, the surfer follows an out-link from \boldsymbol{i} uniformly at random
- Ends up on some page \boldsymbol{j} linked from \boldsymbol{i}
- Process repeats indefinitely

Random Walk Interpretation

- Imagine a random web surfer:
- At any time \boldsymbol{t}, surfer is on some page \boldsymbol{i}
- At time $\boldsymbol{t}+\mathbf{1}$, the surfer follows an out-link from \boldsymbol{i} uniformly at random
- Ends up on some page \boldsymbol{j} linked from \boldsymbol{i}

- Process repeats indefinitely
- Let:
- $\boldsymbol{p}(\boldsymbol{t}) \ldots$ vector whose $\boldsymbol{i}^{\text {th }}$ coordinate is the prob. that the surfer is at page \boldsymbol{i} at time \boldsymbol{t}
- So, $\boldsymbol{p}(\boldsymbol{t})$ is a probability distribution over pages

The Stationary Distribution

- Where is the surfer at time $t+1$?
- Follows a link uniformly at random

$$
p(t+1)=M \cdot p(t)
$$

- Suppose the random walk reaches a state $\boldsymbol{p}(\boldsymbol{t}+\mathbf{1})=$ $\boldsymbol{M} \cdot \boldsymbol{p}(\boldsymbol{t})=\boldsymbol{p}(\boldsymbol{t})$
then $\boldsymbol{p}(\boldsymbol{t})$ is stationary distribution of a random walk

Existence and Uniqueness

- A central result from the theory of random walks (a.k.a. Markov processes):

> For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time $\mathbf{t}=\mathbf{0}$

PageRank:

The Google Formulation

PageRank: Three Questions

$$
r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r_{i}^{(t)}}{\mathrm{d}_{\mathrm{i}}}
$$

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?

Does this converge?

- Example:

	$=$			
r_{a}	1	0	1	0
r_{b}	0	1	0	1

Iteration 0, 1, 2, ...

Does it converge to what we want?

- Example:

	$\overline{=}$			
r_{a}	1	0	0	0
r_{b}	0	1	0	0

Iteration $0,1,2, \ldots$

PageRank: Problems

2 problems:

- (1) Some pages are dead ends (have no out-links)
- Random walk has "nowhere" to go to
- Such pages cause importance to "leak out"

- (2) Spider traps:
(all out-links are within the group)
- Random walker gets "stuck" in a trap
- And eventually spider traps absorb all importance

Problem: Spider Traps

- Power Iteration:
- Set $r_{j}=1$
- $r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- And iterate

m is a spider trap

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{y}}=\mathbf{r}_{\mathrm{y}} / \mathbf{2}+\mathbf{r}_{\mathrm{a}} / \mathbf{2} \\
& \mathbf{r}_{\mathrm{a}}=\mathbf{r}_{\mathrm{y}} / \mathbf{2} \\
& \mathbf{r}_{\mathrm{m}}=\mathbf{r}_{\mathrm{a}} / \mathbf{2}+\mathbf{r}_{\mathrm{m}}
\end{aligned}
$$

- Example:
\(\left(\begin{array}{l}r_{y}

r_{\mathrm{a}}

\mathrm{r}_{\mathrm{m}}\end{array}\right)=\)| $1 / 3$ | $2 / 6$ | $3 / 12$ | $5 / 24$ | | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $1 / 3$ | $1 / 6$ | $2 / 12$ | $3 / 24$ | \ldots | 0 |
| $1 / 3$ | $3 / 6$ | $7 / 12$ | $16 / 24$ | | 1 |
| Iteration $0,1,2, \ldots$ | | | | | |

All the PageRank score gets "trapped" in node m.

Solution: Teleports!

- The Google solution for spider traps: At each time step, the random surfer has two options
- With prob. β, follow a link at random
- With prob. 1- β, jump to some random page
- Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Problem: Dead Ends

- Power Iteration:
- Set $r_{j}=1$
- $r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- And iterate

$$
r_{y}=r_{y} / 2+r_{a} / 2
$$

$$
r_{a}=r_{y} / 2
$$

$$
\mathbf{r}_{\mathrm{m}}=\mathrm{r}_{\mathrm{a}} / 2
$$

- Example:

$$
\left(\begin{array}{c}
r_{y} \\
r_{\mathrm{a}} \\
\mathrm{r}_{\mathrm{m}}
\end{array}\right)=\begin{array}{cccccc}
1 / 3 & 2 / 6 & 3 / 12 & 5 / 24 & & 0 \\
1 / 3 & 1 / 6 & 2 / 12 & 3 / 24 & \ldots & 0 \\
1 / 3 & 1 / 6 & 1 / 12 & 2 / 24 & & 0 \\
\text { Iteration } 0,1,2, \ldots
\end{array}
$$

Here the PageRank "leaks" out since the matrix is not stochastic.

Solution: Always Teleport!

- Teleports: Follow random teleport links with probability 1.0 from dead-ends
- Adjust matrix accordingly

	y	a	m
y	1/2	1/2	0
a	1/2	0	0
m	0	1/2	0

	y	a	m
y	1/2	1/2	1/3
a	1/2	0	1/3
m	0	1/2	1/3

Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do teleports solve the problem?

- Spider-traps are not a problem, but with traps PageRank scores are not what we want
- Solution: Never get stuck in a spider trap by teleporting out of it in a finite number of steps
- Dead-ends are a problem
- The matrix is not column stochastic, so our initial assumptions are not met
- Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go

Solution: Random Teleports

- Google's solution that does it all:

At each step, random surfer has two options:

- With probability β, follow a link at random
- With probability $1-\beta$, jump to some random page
- PageRank equation [Brin-Page, 98]

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N} \underset{\substack{d_{1} . . .0 u t d e g r e e ~ \\ \text { of node } i}}{\substack{\text { d }}}
$$

This formulation assumes that M has no dead ends. We can either preprocess matrix \boldsymbol{M} to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

\section*{Random Teleports $(\beta=0.8)_{\text {м }}$

 | y | | $1 / 3$ | 0.33 | 0.24 | 0.26 | |
| :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| $\mathrm{a}=$ | $1 / 3$ | 0.20 | 0.20 | 0.18 | \ldots | $7 / 33$ |
| m | $1 / 3$ | 0.46 | 0.52 | 0.56 | | $21 / 33$ |}

PageRank with MapReduce

We now return to Dan's slides

No random jumps

Keep it
Simple (At First)

No dead-ends

Mappers and
Reducers
Map Phase - Each node "sends" its importance to its out-links

Reduce Phase - Each node sets its new importance to the sum of the received values

Pseudocode

```
def map(id, n):
    emit(id, n)
    p = n.rank / len(n.adj)
    for m in n.adj:
    emit(m, p)
```


PageRank vs. BFS

PageRank BFS
Map PR/N d+1
Reduce sum min

A large class of graph algorithms involve:
Local computations at each node
Propagating results: "traversing" the graph

Complete PageRank

Missing two things:
-Random Jumps (1- β)

- Dead End Jumps (always)

How can we add these?

Random Jumps

Every node has the same chance of jumping: 1 - β

If it jumps, it jumps to ANY random page ($1 / \mathrm{N}$ for a particular page)

Only need to change reducer side

New Reducer

```
def reduce(id, msgs):
    n = None
    sum = 0
    for o in msgs:
        if o is Node:
            n = o
        else:
        s += O
    n.rank = s * \beta + (1 - \beta) / N
    emit(id, n)
```


What about dead-ends?

Dead-Ends send all their weight everywhere, instead of only some of it

- Option 1: Replace dead-ends with "links to everyone, everywhere"
- No changes to the code
- That's a lot of messages
- Option 2: Post-process to redistribute "missing mass"
- Avoids making N-degree nodes
- Aww man, I have to think?

Post-Processing

R = sum of all ranks
$1-R=$ "missing mass" (sum of ranks of dead ends)

Add (1-R)/N to all nodes

Post Processing

Note: You can move the "post processing" map into the "next map"
(Just remember to adjust the convergence test)

Alternative

Mappers send:

- $\quad \beta$ (node.rank) divided evenly amount out-links
- (1- β)(node.rank) to "everyone"
- special case: dead-ends send entire rank to "everyone"

Reducer adds ($1 / \mathrm{N}$) x "everyone" rank to each sum

Small Problem

$\mathrm{N}=1$ billion. The individual masses will be small.

Solution: store the logs

Log Masses

$$
a=\log m, b=\log n
$$

$m \times n \rightarrow a+b$
$m+n \rightarrow \begin{cases}b+\log \left(1+e^{a-b}\right) & a<b \\ a+\log \left(1+e^{b-a}\right) & a \geq b\end{cases}$

Why Log Masses Work

- Ranks are in [0,1] -- or, really, $(0,1)$
- Mathematically, $\sim 1 / 4$ of all float values are also in this range
- Sign $+=1 / 2$, exponent negative $=1 / 2$
- $\log (x):[0,1]=>[-\infty, 0]$
- Now we're using $1 / 2$ of the values instead of $1 / 4$
- It also lets us store MUCH smaller numbers without underflow
- Most pages will have a very small but non-zero PageRank so this is important

Let's Spark

Problems with MapReduce

- Sending Adjacency lists with each iteration (never changes)
- Needless Shuffling
- Needless Filesystem Access
- Verbose programs
- Each iteration is a new job
- Hadoop has a fairly long start-up time per job

MapReduce vs. Spark

PageRank in Spark

```
val lines = sc.textFile("the-internet.txt")
val damp = 0.85
val links = lines.map{ s =>
    val parts = s.split("\\s+")
    (parts(0), parts(1))
}.distinct().groupByKey().cache()
var ranks = links.mapValues(v => 1.0)
for (i <- 1 to iters) {
    val contribs = links.join(ranks).values.flatMap{ case (urls, rank) =>
        val size = urls.size
        urls.map(url => (url, rank / size))
    }
    ranks = contribs.reduceByKey(_ + _).mapValues((1 - damp) + damp * _)
}
```


PageRank in PySpark

```
lines = sc.textFile("the-internet.txt").map(lambda r: r[0])
# Loads all URLs from input file and initialize their neighbors.
links = lines.map(lambda urls: parseNeighbors(urls)).distinct().groupByKey().cache()
# Loads all URLs with other URL(s) link to from input file and initialize ranks of them to one.
ranks = links.map(lambda url_neighbors: (url_neighbors[0], 1.0))
# Calculates and updates URL ranks continuously using PageRank algorithm.
for iteration in range(iterations):
    # Calculates URL contributions to the rank of other URLs.
    contribs = links.join(ranks).flatMap(lambda url_urls_rank: computeContribs(
        url_urls_rank[1][0], url_urls_rank[1][1] # type: ignore[arg-type]
    ))
    # Re-calculates URL ranks based on neighbor contributions.
    ranks = contribs.reduceByKey(add).mapValues(lambda rank: rank * 0.85 + 0.15)
```


PageRank in MapReduce

See Bespin Implementation

I can't paste it here, it's 600 lines long

Remember Search?

Old Search Ranking - TF and DF and logarithms

Flaw: Term Spam.
Set div to not render: Spam spam spam spam spam spam spam spam ...

New Search Ranking - Page Rank
New Term Spam:

A SEO walks into a bar pub inn roadhouse saloon tavern alehouse beer house beer garden public house drinkery beer ale draught wine...

Solution?

Trust what others say about you, not what you say about yourself:

Use link text (and surrounding text) as terms, instead of contents of page

Remember "tragic love story" vs "star-crossed romance"? Solved.

It has its own problems, though

Web
Results 1 - 10 of about 969,000 for miserable failure (0.06 seconds)
Biography of President George W. Bush
Biography of the president from the official White House web site.
www whitehouse.gov/president/gwbbio.html - 29 k - Cached - Similar pages
Past Presidents - Kids Only - Current News - President
More results from www. whitehouse gove
Welcome to MichaelMoore.com!
Official site of the gadfly of corporations, creator of the film Roger and Me
and the television show The Awful Truth. Includes mailing list, message board, ...
www.michaelmoore.com/-35k-Sep 1, 2005-Cached - Similar pages

BBC NEWS |Americas |'Miserable failure' links to Bush

Web users manipulate a popular search engine so an unflattering description leads to the president's page.
news.bbc.co.uk/2/hi/americas/3298443.stm - 31k - Cached - Similar pages

Google's (and Inktomi's) Miserable Failure

A search for miserable failure on Google brings up the official George W.
Bush biography from the US White House web site. Dismissed by Google as not a ...
searchenginewatch.com/sereport/article php/3296101-45k - Sep 1, 2005 - Cached - Similar pages
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org

Forum Spam

 / Comment SpamWhat if you go to every page that allows posting, and link to your webpage?

Now YouTube, Facebook, CBC News, etc. all link to you.
They have high rank => You have high rank

You also chose the link text, so you're picking your own terms again

Spam Farming Techniques

"Spider traps" accumulate rank.

- Random jumps prevent them from accumulating ALL rank, but it's still boosted by the topology

Technique:

- Page you want to promote has millions of hidden links to farm pages
- They all accumulate the random-jump weight
- Farm pages all link back to the page you want to promote
- They send all their rank back to the page being boosted

- Accessible: Pages that the spammer can post links on (forums, comment sections, etc.)

Millions of
farm pages

- Owned: Pages the spammer directly controls

MATH!

x : total contribution of accessible pages to t y : page rank of t (boosted page) z : page rank of a farm page

$$
\mathrm{z}=\frac{\beta y}{M}+\frac{\alpha}{N} \quad \mathrm{y}=\mathrm{x}+M \beta \mathrm{z}+\frac{\alpha}{N}
$$

$$
y=x+M \beta\left[\frac{\beta y}{M}+\frac{\alpha}{N}\right]+\frac{\alpha}{N}
$$

This term is very small,
so ignored

Millions of farm pages

$$
v=\frac{x}{1-\beta^{2}}+\frac{\beta M}{(1+\beta) N}
$$

Solution to Link Spam

- Ignore links tagged as "nofollow"
- Convince forums, news sites, etc. to insert "nofollow" to all links posted in comments

Added Benefit: A researcher (university website, high rank) can link to a page (to use as an example of term spam) and not boost its ranking

$$
\begin{aligned}
& \text { Makes this } 0 \text {. } \\
& \text { Solved? } \\
& y=\frac{x}{1-\beta^{2}}+\frac{\beta M}{(1+\beta) N}
\end{aligned}
$$

How to Solve a Problem like Spam Farms

Solution to Link Farms

\bigcirc

What's the solution?

It's the topic of the Graph assignment!

In Personalized Page Rank, spam farms don't work. Why?

What to use for "Source Nodes"

We should identify "trustworthy" pages

Easy to say...

What's trustworthy?
Domains with strict entry requirements?
.edu, .gov, etc.
(UW doesn't make the cut...)

Collect a sampling of webpages (seed pages)

Idea

Oracle (Human) sorts the trustworthy from the spam.

- Expensive
- Keep the set as small as possible

Use the "good" pages as the source nodes for personalized page rank

Small change: Each page in trust set is initialized to 1:

Trust sums to M instead of to 1

After iteration, all pages have a trust factor of between 0 and 1

Pick a threshold and mark all pages below that as spam

Justification

- Trustworthy pages mostly only link to other trustworthy pages
- Spam pages mostly only link to other spam pages
- By only teleporting to known good pages, only the "good" partition accumulates significant trust

Conflicting Interests

- The more seed pages there are, the most time and effort needed to curate
- The fewer seed pages there are, the less trust there is in the system
- Threshold will need to be lower, more spam pages slip through
- Need to pick seed pages that are highly likely to point to "most" of the other good pages
- Your Trust is roughly proportional to your link distance from a "good" seed page.

Pick the top k pages by Page Rank

Picking Good Seeds

Scandalous claim!

- Assumption: even with link farms, bad pages won't be in the top k

Use Trusted Domains

- Can't get a .edu, .mil, .gov domain just by buying one!
- But, in fact, you can be trustworthy without being the US Government or a US University

Bootstrapping Trust

- If your seed set is small, will miss a lot of trustworthy sites
- Alternate View: You will only catch a small number of spam farmers
- BUT: Anything that you find is probably pretty trustworthy
- Candidates to be added to the trusted set.

1. Run PageRank
2. Select top pages as seed (and verify trustworthiness)
3. Run TrustRank
4. Set threshold low enough to avoid false positives
5. Remove spam pages from graph
6. Goto Step 1

Alternative - Spam Mass

$r_{p}=$ PageRank of Page p
$r_{p}^{+}=$PageRank of Page p, but random jumps only lead to Trusted pages
$r_{p}^{-}=r_{p}-r_{p}^{+}=$Contribution of "low trust" pages to p^{\prime} s rank
$\mathrm{S}_{\mathrm{p}}=\frac{r_{p}^{-}}{r_{p}}=$ Spam Mass (Fraction of $p^{\prime} \mathrm{s}$ rank that's from "low trust" pages)

The higher your Spam Mass, the more likely you are to be spam

Next Week - "Topic Identification"

A page might have high rank because it's important to a particular topic

Is it important to all topics?

ESPN might be popular for sports news. Should it show up on a search about Greek history?

Topic-Specific Page Rank

Instead of the teleport set being all pages, it's all pages on a given topic T

Where do find this set?

DMOZ is dead, long live
Curlie

- DMOZ?
- High Page-Rank pages, classified using ML (Topic Classification) ?

In other words, the same thing as Multi-Source Personalized Page Rank

Further Tweaks

The random-teleport set can be weighted without breaking anything

If a total of X mass teleports then

- Unweighted: Every Source Node gets X / M
- Weighted: Source Node S_{i} gets $w_{i} X$ / W (Where W is the sum of all w_{i})

You can use regular Page Rank as the weights.

