
Data-Intensive
Distributed
Computing
CS431/451/631/651

Module 5 – Analysing
Graphs

Structure of the Course

“Core” framework features
and algorithm design

A
n

al
yz

in
g

T
ex

t

A
n

al
yz

in
g

G
ra

ph
s

A
n

al
yz

in
g

R
el

at
io

n
al

 D
at

a

D
at

a
M

in
in

g

What’s a Graph

• G = (V, E) (set of vertices and set of edges)
• Direction:

• Undirected – edge (u, v) implies edge (v, u)
• Directed – edge (u, v) does not imply edge (v, u)

• Edges may or may not be labelled
• (Numerical labels are usually called “weights”)

• This should not be news to anybody!

Vocab Reminders

• Vertex (or “node”) – The circle thingies
• Edge (or “link”) – connects one Vertex to another

• (Or to itself, perhaps)

• If there is edge (u, v) then:
• v is an “out-neighbour” of u
• u is an “in-neighbour” of v

• In-Degree(v) – how many edges lead into v
• Out-Degree(v) – how many edges lead out from v

Example Graphs

• Roadways, Water mains, power lines, other SimCity things.
• Social Networks (a person is a vertex, edges are “friends”)
• Actual computer networks
• The internet (just a big network, innit?)

Most graphs are sparse: number of edges is closer to |V| than
it is to |V|2

Representation

In the past you’ve probably seen
three representations
• Adjacency Matrix
• Adjacency List
• Edge List

Adjacency Matrix

An n x n matrix M.
Mij = 1 iff there’s an edge between vi and vj

4321
10101
11012
00013
01014

11

22

33

44

Adjacency Matrix
PRO:
• Who doesn’t love a matrix?
• Useful for mathematical operations
• CUDA loves matrix operations
• Fast neighbourhood check (both in and out)

CON:
• Mostly 0s in a sparse graph (wasted space)
• O(n) to find neighbourhood of v (in and out)

Adjacency List

Row i is a list of the out-neighbours of vertex vi

1: 2, 4
2: 1, 3, 4
3: 1
4: 1, 3

4321

10101

11012

00013

01014

Adjacency List

PRO
• Smaller than the matrix (especially for small graphs)
• Even easier to find out-neighbours of v (directly stored)

CON
• Difficult to find in-neighbours of v

• have to search all other adjacency lists

Edge List

• Just a list of all the edges

(1, 2)
(1, 4)
(2, 1)
(2, 3)
(2, 4)
(3, 1)
(4, 1)
(4, 3)

4321

10101

11012

00013

01014

Edge List

PRO
• Easy to add an edge (just append)
• Simple

CON
• Hard to find neighbours
• Hard to find anything, really

Graph Problems

• Shortest Path – Google Maps, Delivery
Planning

• Minimum Spanning Tree – Utility Lines
• Min-Cut – Utility Lines, Disease Spread
• Max-Flow – Airline scheduling
• Graph Colouring – Planning Final Exams
• Bi-Partite Matching – Dating Sites
• PageRank – Google

What does the web look like?

• 4.77 billion pages – 50 billion (vertices)
• It changes by a lot every day

• 100 billion – 1 trillion links (directed edges)
Sources: worldwidewebsize.com, Tilburg University Research

That’s big

Power laws again:
Fraction of pages that have k links:

16

17

So when you say big,
you mean…

60+ GB
The web graph is Big Data

Clearly, we need Hadoop!

How do we do this on MapReduce (or Spark)?

Graphs and
Clusters

Many graph algorithms involve:
• Local Computations for each

node
• Propagating these results to

neighbours (graph traversal)

Questions:
1. Which representation fits the

best?
2. How do the local computations

work?
3. How does the traversal work?

Answer Key

• (Dan hopes there was some discussion
there)

• Local computation means
INDEPENDENT

• Sounds very much like a map-like task

• Adjacency List makes the most sense
• KVP – key is a vertex, value is its

adjacency list

• Propagation
• Shuffle – Collecting the propagated

messages is reduce-like

Single-Source
Shortest Path

Problem: Find the
shortest path from a
single node (source)
to all other nodes

(shortest might mean
fewest links, or lowest
total weight)

Dijkstra’s Algorithm

• You 100% have seen this in CS240 or CS234, don’t even pretend
Step 1

Set all nodes as unvisited, with D = infinity
Set source node’s D to 0

Step 2
Let v be the unvisited node with lowest distance
For all out-neighbours u of v:

D[u] = min(D[u], D[v] + edge(v, u).weight)

00

1010

55

22 33

22

11

99

77

44 66

Example from CLR

Dijkstra’s Algorithm Example

0

10

5

1010

55

22 33

22

11

99

77

44 66

Example from CLR

Dijkstra’s Algorithm Example

0

8

5

14

7

1010

55

22 33

22

11

99

77

44 66

Example from CLR

Dijkstra’s Algorithm Example

0

8

5

13

7

1010

55

22 33

22

11

99

77

44 66

Example from CLR

Dijkstra’s Algorithm Example

0

8

5

9

7

1010

55

22 33

22

11

99

77

44 66

Example from CLR

Dijkstra’s Algorithm Example

Dijkstra on MapReduce

Not Parallel

• “Minimum D” – not localWhy?

• Parallel Breadth-First Search (pBFS)So instead, we
use:

Simple Case – Unweighted Graph

Want the fewest “hops” from source to destination

Inductive Definition

• dist(s) = 0
• dist(v) = 1 if there is an edge from s to v
• dist(v) = 1 + minu (dist(u)) (for all u s.t. there is an edge u -> v)

Simple Case – Unweighted Graph

•Iteration
•0
•1
•2
•3

n0

n3 n2

n1

n7

n6

n5
n4

n9

n8

Implementation on Hadoop

Keys – node n
Values – (d -- distance to n, adjacency list of n)

Mapper:
for m in adjacency list, emit (m : d + 1)
also emit (n : d)

Reducer:
Update distance to node n based on (m : dist) messages from
mapper

Iteration

To iterate, the output of the reducer gets passed to another (identical)
job as the input.

How? Isn’t the adjacency list gone?

UGH. Yes. OK, so…also emit the adjacency list…

Pseudocode

def map (id, node):
emit(id, node)
for m in node.adjList:
emit(m, node.d + 1))

def reduce (id, values):
d = infinity
node = None
for o in values:
if isNode(o):
node = o

else:
d = min(d, o)

node.d = min(node.d, d)
emit(id, node)

It’s not actually hard
to modify this to
include the path.

Option 1: Node has a
field “path that
results in given d”

Option 2: Node has a
field “previous”

MapReduce Iteration
1. Do the job
2. If we need to keep going,

make a new job that reads the
output from the last job

3. See step 1

What’s the issue here?

reduce

map

HDFS

HDFS

Quitting Time

• The most important part of
recursion is knowing when to stop

• The second most important part
of recursion is knowing when to
stop

• The third most important part of
recursion is knowing when to stop

Kevin Bacon

• All nodes with min
distance of k are “visited”
in iteration k

• Why? Did you not see the
colourful diagram???

• So how many to search
the entire graph?

• 6?

Frontier size during BFS traversal

38

Pseudocode (Weighted Edges)

def map (id, node):
emit(id, node)
for m in node.adjList:
emit(m.id, node.d + m.w))

def reduce (id, values):
d = infinity
node = None
for o in values:
if isNode(o):
node = o

else:
d = min(d, o)

node.d = min(node.d, d)
emit(id, node)

Weighted Edges, Termination

• You can still update a note after you first “discover” it
• Fuzzy Frontier

• Stopping condition unchanged
• Stop when no changes

• More iterations needed
• Could be a lot more

10

n1

n2

n3

n4

n5

n6 n7

n8

n9

1

1
1

1

1

1
1

1

BFS vs
Dijkstra

• Dijkstra only investigates the
lowest-cost node on the frontier

• Parallel BFS investigates all paths
in parallel

• It’s a simple optimization to
restrict to the frontier

• But you’re still sending the
adjacency list back and forth

• Can we do better on
MapReduce?

Issues with MapReduce Iteration

Everything is written to
HDFS, then loaded

again

We must send the
entire graph structure
to the reducers each

iteration, only to have
them send it back again

MapReduce Spark

reduce

map

HDFS

HDFS

join

HDFS

Adjacency Lists Start Node

flatMap

reduceByKey

Cache!

Updated Nodes
Stop

?

HDFS

Something Borrowed

• Next Slides are thanks to Jure Leskovec, Anand
Rajaraman, Jeff Ullman (Stanford University)

Web as a Directed Graph

45

Who to trust?

uwaterloo.ca fakeuw.ca

University of waterloo University of
waterloo University of waterloo

University of waterloo University of
waterloo University of waterloo

University of waterloo University of
waterloo

Ranked retrieval fails!

Query: University of Waterloo

46

Web Search Challenge
• Web contains many sources of information

Who to “trust”?
• Trick: Trustworthy pages may point to each other!

47

Ranking Nodes on the Graph

• All web pages are not equally “important”
www.joeschmoe.com vs. www.stanford.edu

• There is large diversity
in the web-graph
node connectivity.
Let’s rank the pages by
the link structure!

48

PageRank:
The “Flow”
Formulation

49

Links as Votes

• Idea: Links as votes
• Page is more important if it has more links

• In-coming links? Out-going links?

• Think of in-links as votes:
• www.stanford.edu has 23,400 in-links
• www.joeschmoe.com has 1 in-link

• Are all in-links equal?
• Links from important pages count more
• Recursive question!

50

Example: PageRank Scores

B
38.4

C
34.3

E
8.1

F
3.9

D
3.9

A
3.3

1.6
1.6 1.6 1.6 1.6

51

Simple Recursive Formulation
• Each link’s vote is proportional to the importance of

its source page

• If page j with importance rj has n out-links, each link
gets rj / n votes

• Page j’s own importance is the sum of the votes on its
in-links

j

ki

rj/3

rj/3rj/3
rj = ri/3+rk/4

ri/3 rk/4

52

PageRank: The “Flow” Model
• Define a “rank” rj for page j

ji

i
j

r
r

id
y

ma
a/2

y/2
a/2

m

y/2

“Flow” equations:
ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2

𝒅𝒊 … out-degree of node 𝒊

53

Solving the Flow Equations
• 3 equations, 3 unknowns,

no constants
• No unique solution
• All solutions equivalent modulo the scale factor

• Additional constraint forces uniqueness:
• 𝒚 𝒂 𝒎

• Solution: 𝒚
𝟐

𝟓 𝒂
𝟐

𝟓 𝒎
𝟏

𝟓

• Gaussian elimination method works for
small examples, but we need a better method for
large web-size graphs

• We need a new formulation!

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2

Flow equations:

54

PageRank: Matrix Formulation
• Stochastic adjacency matrix

• Let page has 𝑖 out-links

• If , then else
• 𝑴 is a column stochastic matrix

• Columns sum to 1

may

0½½y

10½a

0½0m

y

ma
a/2

y/2
a/2

m

y/2

55

PageRank: How to solve?

• Power Iteration:
• Set /N

• 1: →

• 2:
• Goto 1

• Example:
ry 1/3 1/3 5/12 9/24 6/15

ra = 1/3 3/6 1/3 11/24 … 6/15

rm 1/3 1/6 3/12 1/6 3/15

y

a m

may

0½½y

10½a

0½0m

Iteration 0, 1, 2, …

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2

56

PageRank: How to solve?

• Power Iteration:
• Set /N

• 1: →

• 2:
• Goto 1

• Example:
ry 1/3 1/3 5/12 9/24 6/15

ra = 1/3 3/6 1/3 11/24 … 6/15

rm 1/3 1/6 3/12 1/6 3/15

y

a m

may

0½½y

10½a

0½0m

Iteration 0, 1, 2, …

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2

57

Random Walk Interpretation

 Imagine a random web surfer:
• At any time , surfer is on some page
• At time , the surfer follows an

out-link from uniformly at random
• Ends up on some page linked from
• Process repeats indefinitely

ji

i
j

r
r

(i)dout

j

i1 i2 i3

58

Random Walk Interpretation

 Imagine a random web surfer:
• At any time , surfer is on some page
• At time , the surfer follows an

out-link from uniformly at random
• Ends up on some page linked from
• Process repeats indefinitely

 Let:
 … vector whose th coordinate is the

prob. that the surfer is at page at time
• So, is a probability distribution over pages

ji

i
j

r
r

(i)dout

j

i1 i2 i3

59

The Stationary Distribution
• Where is the surfer at time t+1?

• Follows a link uniformly at random

 Suppose the random walk reaches a state

then is stationary distribution of a random walk

)(M)1(tptp
j

i1 i2 i3

60

Existence and Uniqueness
• A central result from the theory of random walks

(a.k.a. Markov processes):

For graphs that satisfy certain conditions,
the stationary distribution is unique and

eventually will be reached no matter what the
initial probability distribution at time t = 0

61

PageRank:
The Google Formulation

62

PageRank: Three Questions

• Does this converge?

• Does it converge to what we want?

• Are results reasonable?

ji

t
it

j

r
r

i

)(
)1(

d

63

Does this converge?

• Example:
ra 1 0 1 0

rb 0 1 0 1

=

ba

Iteration 0, 1, 2, …

ji

t
it

j

r
r

i

)(
)1(

d

64

Does it converge to what we want?

• Example:
ra 1 0 0 0

rb 0 1 0 0

=

ba

Iteration 0, 1, 2, …

ji

t
it

j

r
r

i

)(
)1(

d

65

PageRank: Problems
2 problems:

• (1) Some pages are
dead ends (have no out-links)

• Random walk has “nowhere” to go to
• Such pages cause importance to “leak out”

• (2) Spider traps:
(all out-links are within the group)

• Random walker gets “stuck” in a trap
• And eventually spider traps absorb all importance

Dead end

66

Problem: Spider Traps

• Power Iteration:
• Set
• →

• And iterate

• Example:
ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 3/6 7/12 16/24 1
Iteration 0, 1, 2, …

y

a m

may

0½½y

00½a

1½0m

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2 + rm

m is a spider trap

All the PageRank score gets “trapped” in node m. 67

Solution: Teleports!
• The Google solution for spider traps: At each time

step, the random surfer has two options
• With prob. , follow a link at random
• With prob. 1-, jump to some random page
• Common values for are in the range 0.8 to 0.9

• Surfer will teleport out of spider trap
within a few time steps

y

a m

y

a m
68

Problem: Dead Ends

• Power Iteration:
• Set
• →

• And iterate

• Example:
ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 1/6 1/12 2/24 0
Iteration 0, 1, 2, …

y

a m

may

0½½y

00½a

0½0m

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2

Here the PageRank “leaks” out since the matrix is not stochastic. 69

Solution: Always Teleport!
• Teleports: Follow random teleport links with

probability 1.0 from dead-ends
• Adjust matrix accordingly

y

a m

may

⅓½½y

⅓0½a

⅓½0m

may

0½½y

00½a

0½0m

y

a m

70

Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem
and why do teleports solve the problem?

• Spider-traps are not a problem, but with traps PageRank
scores are not what we want

• Solution: Never get stuck in a spider trap by
teleporting out of it in a finite number of steps

• Dead-ends are a problem
• The matrix is not column stochastic, so our initial assumptions

are not met
• Solution: Make matrix column stochastic by always teleporting

when there is nowhere else to go

71

Solution: Random Teleports

• Google’s solution that does it all:
At each step, random surfer has two options:

• With probability , follow a link at random
• With probability 1-, jump to some random page

• PageRank equation [Brin-Page, 98]
di … out-degree

of node i

This formulation assumes that 𝑴 has no dead ends. We can either
preprocess matrix 𝑴 to remove all dead ends or explicitly follow random

teleport links with probability 1.0 from dead-ends. 72

Random Teleports (0.8)

y
a =
m

1/3
1/3
1/3

0.33
0.20
0.46

0.24
0.20
0.52

0.26
0.18
0.56

7/33
5/33

21/33
. . .

y

a m

13/15

7/15

1/2 1/2 0
1/2 0 0
0 1/2 1

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

y 7/15 7/15 1/15
a 7/15 1/15 1/15
m 1/15 7/15 13/15

0.8 + 0.2

M [1/N]NxN

A

73

We now return to Dan’s slides

Keep it
Simple (At
First)

No random
jumps

No dead-ends

Mappers
and
Reducers

Map Phase – Each node
“sends” its importance to its
out-links

Reduce Phase – Each node
sets its new importance to
the sum of the received
values

Pseudocode

def map(id, n):
emit(id, n)
p = n.rank / len(n.adj)
for m in n.adj:
emit(m, p)

def reduce(id, msgs):
n = None
sum = 0
for o in msgs:
if o is Node:
n = o

else:
s += o

n.rank = s
emit(id, n)

Map

Reduce

PageRank BFS

PR/N d+1

sum min

PageRank vs. BFS

A large class of graph algorithms involve:
Local computations at each node

Propagating results: “traversing” the graph
78

Complete
PageRank

Missing two things:
•Random Jumps (1-β)
•Dead End Jumps
(always)

How can we add these?

Random Jumps

Every node has the same chance of jumping: 1 – β

If it jumps, it jumps to ANY random page (1/N for a
particular page)

Only need to change reducer side

New Reducer

def reduce(id, msgs):
n = None
sum = 0
for o in msgs:
if o is Node:
n = o

else:
s += o

n.rank = s * β + (1 – β) / N
emit(id, n)

What about dead-ends?

Dead-Ends send all their weight everywhere, instead of only some of it

• Option 1: Replace dead-ends with “links to everyone, everywhere”
• No changes to the code
• That’s a lot of messages

• Option 2: Post-process to redistribute “missing mass”
• Avoids making N-degree nodes
• Aww man, I have to think?

Post-Processing

R = sum of all ranks

1 – R = “missing mass” (sum of ranks of dead ends)

Add (1 – R)/N to all nodes

Post Processing

Note: You can move the “post
processing” map into the “next
map”

(Just remember to adjust the
convergence test)

Convergence?
reduce

map

HDFS

HDFS

map

HDFS

Alternative

Mappers send:
• β(node.rank) divided evenly amount out-links
• (1 – β)(node.rank) to “everyone”
• special case: dead-ends send entire rank to “everyone”

Reducer adds (1/N) x “everyone” rank to each sum

Small Problem

N = 1 billion. The
individual masses

will be small.

Solution: store
the logs

Log Masses

Why Log Masses Work

• Ranks are in [0,1] -- or, really, (0,1)
• Mathematically, ~ ¼ of all float values are also in this range

• Sign + = ½ , exponent negative = ½
• Log(x) : [0,1] => [-∞, 0]

• Now we’re using ½ of the values instead of ¼
• It also lets us store MUCH smaller numbers without

underflow
• Most pages will have a very small but non-zero PageRank

so this is important

Let’s Spark

Problems with MapReduce
• Sending Adjacency lists with each iteration (never changes)
• Needless Shuffling
• Needless Filesystem Access
• Verbose programs
• Each iteration is a new job

• Hadoop has a fairly long start-up time per job

reduce

HDFS

…

map

HDFS

reduce

map

HDFS

reduce

map

HDFS

join

join

join

…

HDFS HDFS

Adjacency Lists PageRank vector

PageRank vector

flatMap

reduceByKey

PageRank vector

flatMap

reduceByKey

Colour Legend
• Cached RDD
• Uncached RDD
• No Shuffle
• Shuffle

17
1

80

72

28

0
20
40
60
80

100
120
140
160
180

30 60

Ti
m

e
pe

r I
te

ra
ti

on
 (s

)

Number of machines

Hadoop

Spark

Source: http://ampcamp.berkeley.edu/wp-content/uploads/2012/06/matei-zaharia-part-2-amp-camp-2012-standalone-programs.pdf

MapReduce vs. Spark

PageRank in Spark
val lines = sc.textFile("the-internet.txt")

val damp = 0.85

val links = lines.map{ s =>

val parts = s.split("\\s+")

(parts(0), parts(1))

}.distinct().groupByKey().cache()

var ranks = links.mapValues(v => 1.0)

for (i <- 1 to iters) {

val contribs = links.join(ranks).values.flatMap{ case (urls, rank) =>

val size = urls.size

urls.map(url => (url, rank / size))

}

ranks = contribs.reduceByKey(_ + _).mapValues((1 – damp) + damp * _)

}

PageRank in PySpark
lines = sc.textFile(“the-internet.txt”).map(lambda r: r[0])

Loads all URLs from input file and initialize their neighbors.

links = lines.map(lambda urls: parseNeighbors(urls)).distinct().groupByKey().cache()

Loads all URLs with other URL(s) link to from input file and initialize ranks of them to one.

ranks = links.map(lambda url_neighbors: (url_neighbors[0], 1.0))

Calculates and updates URL ranks continuously using PageRank algorithm.

for iteration in range(iterations):

Calculates URL contributions to the rank of other URLs.

contribs = links.join(ranks).flatMap(lambda url_urls_rank: computeContribs(

url_urls_rank[1][0], url_urls_rank[1][1] # type: ignore[arg-type]

))

Re-calculates URL ranks based on neighbor contributions.

ranks = contribs.reduceByKey(add).mapValues(lambda rank: rank * 0.85 + 0.15)

PageRank in MapReduce

See Bespin Implementation

I can’t paste it here, it’s 600 lines long

Page Rank ImprovementsPage Rank Improvements

95

Remember Search?

Old Search Ranking – TF and DF and logarithms

Flaw: Term Spam.
Set div to not render: Spam spam spam spam spam spam spam spam …

New Search Ranking – Page Rank
New Term Spam:

A SEO walks into a bar pub inn roadhouse saloon tavern alehouse beer house
beer garden public house drinkery beer ale draught wine…

96

Solution?

Trust what others say about you, not what you say about yourself:

Use link text (and surrounding text) as terms, instead of contents of
page

Remember “tragic love story” vs “star-crossed romance”? Solved.

97

It has its own problems, though

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org 98

Forum Spam
/ Comment
Spam

What if you go to every page that allows
posting, and link to your webpage?

Now YouTube, Facebook, CBC News, etc. all
link to you.
They have high rank => You have high rank

You also chose the link text, so you’re picking
your own terms again

99

Spam Farming

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets,
http://www.mmds.org

Spam Farming Techniques

“Spider traps” accumulate rank.
• Random jumps prevent them from accumulating ALL rank, but it’s still

boosted by the topology

Technique:
• Page you want to promote has millions of hidden links to farm pages

• They all accumulate the random-jump weight

• Farm pages all link back to the page you want to promote
• They send all their rank back to the page being boosted

101

102

Bogus
Website Link Farm

103

Solar Radiation
Random Jumps

Reflected Rays
Links

Thermal Target
Boosted Website

Pages from the spammer’s point of view

• Inaccessible: Most of the internet.
Spammer cannot edit these pages

• Accessible: Pages that the spammer can
post links on (forums, comment sections,
etc.)

• Owned: Pages the spammer directly
controls

104

Inaccessible

t

Accessible Owned

1

2

M

Millions of
farm pages

MATH!

x: total contribution of accessible pages to t
y: page rank of t (boosted page)
z: page rank of a farm page

2

105

Inaccessible

t

Accessible Owned

1

2

M

Millions of
farm pages

This term is very small,
so ignored

3.6x for 𝛽 = 0.85
Spider trap amplifies

incoming links For 𝛽 = 0.85, 0.45M/N
Grows linearly with M

Solution to Link Spam

• Ignore links tagged as “nofollow”
• Convince forums, news sites, etc. to insert “nofollow” to all links

posted in comments

Added Benefit: A researcher (university website, high rank) can link to a
page (to use as an example of term spam) and not boost its ranking

2

106

Makes this 0.
Solved?

How to Solve
a Problem like
Spam Farms

10
7

Solution to Link Farms

What’s the solution?

It’s the topic of the Graph assignment!

In Personalized Page Rank, spam farms don’t work. Why?

108

What to use for “Source Nodes”

We should identify “trustworthy” pages
Easy to say…

What’s trustworthy?
Domains with strict entry requirements?
.edu, .gov, etc.
(UW doesn’t make the cut…)

109

Idea

Collect a sampling of webpages (seed pages)

Oracle (Human) sorts the trustworthy from
the spam.
• Expensive
• Keep the set as small as possible

110

Idea

Use the “good” pages as the source
nodes for personalized page rank

Small change: Each page in trust set is
initialized to 1:

Trust sums to M instead of to 1

After iteration, all pages have a trust
factor of between 0 and 1

Pick a threshold and mark all pages
below that as spam

111

Justification

• Trustworthy pages mostly only
link to other trustworthy pages

• Spam pages mostly only link to
other spam pages

• By only teleporting to known
good pages, only the “good”
partition accumulates significant
trust

112

Conflicting Interests

• The more seed pages there are, the most time and effort
needed to curate

• The fewer seed pages there are, the less trust there is in the
system

• Threshold will need to be lower, more spam pages slip through

• Need to pick seed pages that are highly likely to point to
“most” of the other good pages

• Your Trust is roughly proportional to your link distance from a
“good” seed page.

113

Picking
Good
Seeds

• Assumption: even with link farms, bad pages
won’t be in the top k

Pick the top k pages by Page Rank

• Can’t get a .edu, .mil, .gov domain just by
buying one!

• But, in fact, you can be trustworthy without
being the US Government or a US University

Use Trusted Domains

Scandalous claim!

Bootstrapping Trust

• If your seed set is small, will miss a lot of trustworthy sites
• Alternate View: You will only catch a small number of spam farmers

• BUT: Anything that you find is probably pretty trustworthy
• Candidates to be added to the trusted set.

1. Run PageRank
2. Select top pages as seed (and verify trustworthiness)
3. Run TrustRank
4. Set threshold low enough to avoid false positives
5. Remove spam pages from graph
6. Goto Step 1

115

Alternative – Spam Mass

= PageRank of Page p
= PageRank of Page p, but random jumps only lead to Trusted pages

= – = Contribution of “low trust” pages to p’s rank

Sp = = Spam Mass (Fraction of p’s rank that’s from “low trust” pages)

The higher your Spam Mass, the more likely you are to be spam
116

More
Variations on
a Theme

Next Week – “Topic Identification”

A page might have high rank because
it’s important to a particular topic

Is it important to all topics?

ESPN might be popular for sports
news. Should it show up on a search
about Greek history?

117

Topic-Specific Page Rank

Instead of the teleport set being all pages, it’s all pages on a given
topic T

Where do find this set?

• DMOZ?
• High Page-Rank pages, classified using ML (Topic Classification) ?

In other words, the same thing as Multi-Source Personalized Page
Rank

118

DMOZ is dead, long live
Curlie

Further Tweaks
The random-teleport set can be weighted without breaking
anything

If a total of X mass teleports then
• Unweighted: Every Source Node gets X / M
• Weighted: Source Node Si gets wiX / W (Where W is the sum of

all wi)

You can use regular Page Rank as the weights.

119

