
Data-Intensive 
Distributed 
Computing
CS431/451/631/651

Module 5 – Analysing 
Graphs



Structure of the Course

“Core” framework features 
and algorithm design
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What’s a Graph

• G = (V, E) (set of vertices and set of edges)
• Direction:

• Undirected – edge (u, v) implies edge (v, u)
• Directed – edge (u, v) does not imply edge (v, u)

• Edges may or may not be labelled
• (Numerical labels are usually called “weights”)

• This should not be news to anybody!



Vocab Reminders

• Vertex (or “node”) – The circle thingies
• Edge (or “link”) – connects one Vertex to another

• (Or to itself, perhaps)

• If there is edge (u, v) then:
• v is an “out-neighbour” of u
• u is an “in-neighbour” of v

• In-Degree(v) – how many edges lead into v
• Out-Degree(v) – how many edges lead out from v



Example Graphs

• Roadways, Water mains, power lines, other SimCity things.
• Social Networks (a person is a vertex, edges are “friends”)
• Actual computer networks
• The internet (just a big network, innit?)

Most graphs are sparse: number of edges is closer to |V| than 
it is to |V|2



Representation

In the past you’ve probably seen 
three representations
• Adjacency Matrix
• Adjacency List
• Edge List



Adjacency Matrix

An n x n matrix M.
Mij = 1 iff there’s an edge between vi and vj

4321
10101
11012
00013
01014
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Adjacency Matrix
PRO:
• Who doesn’t love a matrix?
• Useful for mathematical operations
• CUDA loves matrix operations
• Fast neighbourhood check (both in and out)

CON:
• Mostly 0s in a sparse graph (wasted space)
• O(n) to find neighbourhood of v (in and out)



Adjacency List

Row i is a list of the out-neighbours of vertex vi

1: 2, 4
2: 1, 3, 4
3: 1
4: 1, 3

4321

10101

11012

00013

01014



Adjacency List

PRO
• Smaller than the matrix (especially for small graphs)
• Even easier to find out-neighbours of v (directly stored)

CON
• Difficult to find in-neighbours of v

• have to search all other adjacency lists



Edge List

• Just a list of all the edges

(1, 2)
(1, 4)
(2, 1)
(2, 3)
(2, 4)
(3, 1)
(4, 1)
(4, 3)

4321

10101

11012

00013

01014



Edge List

PRO
• Easy to add an edge (just append)
• Simple

CON
• Hard to find neighbours
• Hard to find anything, really





Graph Problems

• Shortest Path – Google Maps, Delivery 
Planning 

• Minimum Spanning Tree – Utility Lines
• Min-Cut – Utility Lines, Disease Spread
• Max-Flow – Airline scheduling
• Graph Colouring – Planning Final Exams
• Bi-Partite Matching – Dating Sites
• PageRank – Google



What does the web look like?

• 4.77 billion pages – 50 billion (vertices)  
• It changes by a lot every day

• 100 billion – 1 trillion links (directed edges)
Sources: worldwidewebsize.com, Tilburg University Research

That’s big

Power laws again:  
Fraction of pages that have k links:
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So when you say big, 
you mean…

60+ GB
The web graph is Big Data

Clearly, we need Hadoop!

How do we do this on MapReduce (or Spark)?



Graphs and 
Clusters

Many graph algorithms involve:
• Local Computations for each 

node
• Propagating these results to 

neighbours (graph traversal)

Questions:
1. Which representation fits the 

best?
2. How do the local computations 

work?
3. How does the traversal work?



Answer Key

• (Dan hopes there was some discussion 
there)

• Local computation means 
INDEPENDENT

• Sounds very much like a map-like task

• Adjacency List makes the most sense 
• KVP – key is a vertex, value is its 

adjacency list

• Propagation
• Shuffle – Collecting the propagated 

messages is reduce-like



Single-Source 
Shortest Path

Problem: Find the 
shortest path from a 
single node (source) 
to all other nodes   

(shortest might mean 
fewest links, or lowest 
total weight)



Dijkstra’s Algorithm

• You 100% have seen this in CS240 or CS234, don’t even pretend
Step 1

Set all nodes as unvisited, with D = infinity
Set source node’s D to 0

Step 2
Let v be the unvisited node with lowest distance
For all out-neighbours u of v:

D[u] = min(D[u], D[v] + edge(v, u).weight)
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Dijkstra on MapReduce

Not Parallel 

• “Minimum D” – not localWhy?  

• Parallel Breadth-First Search (pBFS)So instead, we 
use:



Simple Case – Unweighted Graph

Want the fewest “hops” from source to destination

Inductive Definition

• dist(s) = 0
• dist(v) = 1 if there is an edge from s to v
• dist(v) = 1 + minu (dist(u))   (for all u s.t. there is an edge u -> v)



Simple Case – Unweighted Graph

•Iteration
•0
•1
•2
•3

n0

n3 n2

n1

n7

n6

n5
n4

n9

n8



Implementation on Hadoop

Keys – node n
Values – (d -- distance to n, adjacency list of n)  

Mapper:
for m in adjacency list, emit (m : d + 1)
also emit (n : d)

Reducer: 
Update distance to node n based on (m : dist) messages from 
mapper



Iteration

To iterate, the output of the reducer gets passed to another (identical) 
job as the input.

How?  Isn’t the adjacency list gone?

UGH.  Yes.  OK, so…also emit the adjacency list…



Pseudocode

def map (id, node):
emit(id, node)
for m in node.adjList:
emit(m, node.d + 1))

def reduce (id, values):
d = infinity
node = None
for o in values:
if isNode(o):
node = o

else:
d = min(d, o)

node.d = min(node.d, d)
emit(id, node)



It’s not actually hard 
to modify this to 
include the path.

Option 1: Node has a 
field “path that 
results in given d”

Option 2: Node has a 
field “previous”



MapReduce Iteration
1. Do the job
2. If we need to keep going, 

make a new job that reads the 
output from the last job

3. See step 1

What’s the issue here?

reduce

map

HDFS

HDFS



Quitting Time

• The most important part of 
recursion is knowing when to stop

• The second most important part 
of recursion is knowing when to 
stop

• The third most important part of 
recursion is knowing when to stop



Kevin Bacon

• All nodes with min 
distance of k are “visited” 
in iteration k

• Why?  Did you not see the 
colourful diagram???

• So how many to search 
the entire graph?

• 6?



Frontier size during BFS traversal

38



Pseudocode (Weighted Edges)

def map (id, node):
emit(id, node)
for m in node.adjList:
emit(m.id, node.d + m.w))

def reduce (id, values):
d = infinity
node = None
for o in values:
if isNode(o):
node = o

else:
d = min(d, o)

node.d = min(node.d, d)
emit(id, node)



Weighted Edges, Termination

• You can still update a note after you first “discover” it
• Fuzzy Frontier

• Stopping condition unchanged
• Stop when no changes

• More iterations needed
• Could be a lot more

10
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BFS vs 
Dijkstra

• Dijkstra only investigates the 
lowest-cost node on the frontier

• Parallel BFS investigates all paths 
in parallel

• It’s a simple optimization to 
restrict to the frontier

• But you’re still sending the 
adjacency list back and forth

• Can we do better on 
MapReduce?



Issues with MapReduce Iteration

Everything is written to 
HDFS, then loaded 

again

We must send the 
entire graph structure 
to the reducers each 

iteration, only to have 
them send it back again



MapReduce                          Spark

reduce

map

HDFS

HDFS

join

HDFS

Adjacency Lists Start Node

flatMap

reduceByKey

Cache!

Updated Nodes
Stop

?

HDFS



Something Borrowed

• Next Slides are thanks to Jure Leskovec, Anand 
Rajaraman, Jeff Ullman (Stanford University)



Web as a Directed Graph
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Who to trust?

uwaterloo.ca fakeuw.ca

University of waterloo University of 
waterloo University of waterloo 

University of waterloo  University of 
waterloo University of waterloo  

University of waterloo University of 
waterloo 

Ranked retrieval fails!

Query: University of Waterloo

46



Web Search Challenge
• Web contains many sources of information

Who to “trust”?
• Trick: Trustworthy pages may point to each other!

47



Ranking Nodes on the Graph

• All web pages are not equally “important”
www.joeschmoe.com vs. www.stanford.edu 

• There is large diversity 
in the web-graph 
node connectivity.
Let’s rank the pages by 
the link structure!

48



PageRank: 
The “Flow” 
Formulation

49



Links as Votes

• Idea: Links as votes
• Page is more important if it has more links

• In-coming links? Out-going links?

• Think of in-links as votes:
• www.stanford.edu has 23,400 in-links
• www.joeschmoe.com has 1 in-link

• Are all in-links equal?
• Links from important pages count more
• Recursive question! 

50



Example: PageRank Scores

B
38.4

C
34.3

E
8.1

F
3.9

D
3.9

A
3.3

1.6
1.6 1.6 1.6 1.6
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Simple Recursive Formulation
• Each link’s vote is proportional to the importance of 

its source page

• If page j with importance rj has n out-links, each link 
gets rj / n votes

• Page j’s own importance is the sum of the votes on its 
in-links

j

ki

rj/3

rj/3rj/3
rj = ri/3+rk/4

ri/3 rk/4

52



PageRank: The “Flow” Model
• Define a “rank” rj for page j
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“Flow” equations:
ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2

𝒅𝒊 … out-degree of node 𝒊
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Solving the Flow Equations
• 3 equations, 3 unknowns, 

no constants
• No unique solution
• All solutions equivalent modulo the scale factor

• Additional constraint forces uniqueness:
• 𝒚 𝒂 𝒎

• Solution: 𝒚
𝟐

𝟓 𝒂
𝟐

𝟓 𝒎
𝟏

𝟓

• Gaussian elimination method works for 
small examples, but we need a better method for 
large web-size graphs

• We need a new formulation!

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2

Flow equations:

54



PageRank: Matrix Formulation
• Stochastic adjacency matrix 

• Let page has 𝑖 out-links

• If , then  else   
• 𝑴 is a column stochastic matrix

• Columns sum to 1

may

0½½y

10½a

0½0m

y

ma
a/2

y/2
a/2

m

y/2
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PageRank: How to solve?

• Power Iteration:
• Set /N

• 1: →

• 2:
• Goto 1

• Example:
ry 1/3 1/3 5/12 9/24 6/15

ra = 1/3 3/6 1/3 11/24 … 6/15

rm 1/3 1/6 3/12 1/6 3/15

y

a m

may

0½½y

10½a

0½0m

Iteration 0, 1, 2, …

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2
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PageRank: How to solve?

• Power Iteration:
• Set /N

• 1: →

• 2:
• Goto 1

• Example:
ry 1/3 1/3 5/12 9/24 6/15

ra = 1/3 3/6 1/3 11/24 … 6/15

rm 1/3 1/6 3/12 1/6 3/15

y

a m

may

0½½y

10½a

0½0m

Iteration 0, 1, 2, …

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2
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Random Walk Interpretation

 Imagine a random web surfer:
• At any time , surfer is on some page
• At time , the surfer follows an 

out-link from uniformly at random
• Ends up on some page linked from 
• Process repeats indefinitely
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Random Walk Interpretation

 Imagine a random web surfer:
• At any time , surfer is on some page
• At time , the surfer follows an 

out-link from uniformly at random
• Ends up on some page linked from 
• Process repeats indefinitely

 Let:
 … vector whose th coordinate is the 

prob. that the surfer is at page at time
• So, is a probability distribution over pages
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The Stationary Distribution
• Where is the surfer at time t+1?

• Follows a link uniformly at random

 Suppose the random walk reaches a state 

then is stationary distribution of a random walk

)(M)1( tptp 
j

i1 i2 i3
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Existence and Uniqueness
• A central result from the theory of random walks 

(a.k.a. Markov processes):

For graphs that satisfy certain conditions, 
the stationary distribution is unique and 

eventually will be reached no matter what the 
initial probability distribution at time t = 0

61



PageRank: 
The Google Formulation

62



PageRank: Three Questions

• Does this converge?

• Does it converge to what we want?

• Are results reasonable?
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Does this converge?

• Example:
ra 1 0 1 0

rb 0 1 0 1

=

ba

Iteration 0, 1, 2, …




 
ji

t
it

j

r
r

i

)(
)1(

d

64



Does it converge to what we want?

• Example:
ra 1 0 0 0

rb 0 1 0 0

=

ba

Iteration 0, 1, 2, …
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PageRank: Problems
2 problems:

• (1) Some pages are 
dead ends (have no out-links)

• Random walk has “nowhere” to go to
• Such pages cause importance to “leak out”

• (2) Spider traps:
(all out-links are within the group)

• Random walker gets “stuck” in a trap
• And eventually spider traps absorb all importance

Dead end

66



Problem: Spider Traps

• Power Iteration:
• Set 
• →

• And iterate

• Example:
ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 3/6 7/12 16/24 1
Iteration 0, 1, 2, …

y

a m

may

0½½y

00½a

1½0m

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2 + rm

m is a spider trap

All the PageRank score gets “trapped” in node m. 67



Solution: Teleports!
• The Google solution for spider traps: At each time 

step, the random surfer has two options
• With prob. , follow a link at random
• With prob. 1-, jump to some random page
• Common values for  are in the range 0.8 to 0.9

• Surfer will teleport out of spider trap 
within a few time steps

y

a m

y

a m
68



Problem: Dead Ends

• Power Iteration:
• Set 
• →

• And iterate

• Example:
ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 1/6 1/12 2/24 0
Iteration 0, 1, 2, …

y

a m

may

0½½y

00½a

0½0m

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2

Here the PageRank “leaks” out since the matrix is not stochastic. 69



Solution: Always Teleport!
• Teleports: Follow random teleport links with 

probability 1.0 from dead-ends
• Adjust matrix accordingly

y

a m

may

⅓½½y

⅓0½a

⅓½0m

may

0½½y

00½a

0½0m

y

a m

70



Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem 
and why do teleports solve the problem?

• Spider-traps are not a problem, but with traps PageRank 
scores are not what we want

• Solution: Never get stuck in a spider trap by 
teleporting out of it in a finite number of steps

• Dead-ends are a problem
• The matrix is not column stochastic, so our initial assumptions 

are not met
• Solution: Make matrix column stochastic by always teleporting 

when there is nowhere else to go

71



Solution: Random Teleports

• Google’s solution that does it all:
At each step, random surfer has two options:

• With probability ,  follow a link at random
• With probability 1-, jump to some random page

• PageRank equation [Brin-Page, 98]
di … out-degree 

of node i

This formulation assumes that 𝑴 has no dead ends.  We can either 
preprocess matrix 𝑴 to remove all dead ends or explicitly follow random 

teleport links with probability 1.0 from dead-ends. 72



Random Teleports (  0.8)

y
a    =
m

1/3
1/3
1/3

0.33
0.20
0.46

0.24
0.20
0.52

0.26
0.18
0.56

7/33
5/33

21/33
. . .

y

a m

13/15

7/15

1/2 1/2   0
1/2   0    0
0   1/2   1

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

y   7/15  7/15   1/15
a   7/15  1/15   1/15
m  1/15  7/15  13/15

0.8 + 0.2

M [1/N]NxN

A
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We now return to Dan’s slides



Keep it 
Simple (At 
First)

No random 
jumps

No dead-ends



Mappers 
and 
Reducers

Map Phase – Each node 
“sends” its importance to its 
out-links

Reduce Phase – Each node 
sets its new importance to 
the sum of the received 
values



Pseudocode

def map(id, n):
emit(id, n)
p = n.rank / len(n.adj)
for m in n.adj:
emit(m, p)

def reduce(id, msgs):
n = None
sum = 0
for o in msgs:
if o is Node:
n = o

else:
s += o

n.rank = s
emit(id, n)



Map

Reduce

PageRank BFS

PR/N d+1

sum min

PageRank vs. BFS

A large class of graph algorithms involve:
Local computations at each node

Propagating results: “traversing” the graph
78



Complete 
PageRank

Missing two things:
•Random Jumps (1-β)
•Dead End Jumps 
(always)

How can we add these?



Random Jumps

Every node has the same chance of jumping: 1 – β

If it jumps, it jumps to ANY random page (1/N for a 
particular page)

Only need to change reducer side



New Reducer

def reduce(id, msgs):
n = None
sum = 0
for o in msgs:
if o is Node:
n = o

else:
s += o

n.rank = s * β + (1 – β) / N
emit(id, n)



What about dead-ends?

Dead-Ends send all their weight everywhere, instead of only some of it

• Option 1: Replace dead-ends with “links to everyone, everywhere”
• No changes to the code
• That’s a lot of messages

• Option 2: Post-process to redistribute “missing mass”
• Avoids making N-degree nodes
• Aww man, I have to think?



Post-Processing

R = sum of all ranks

1 – R = “missing mass” (sum of ranks of dead ends)

Add (1 – R)/N to all nodes



Post Processing

Note: You can move the “post 
processing” map into the “next 
map”

(Just remember to adjust the 
convergence test)

Convergence?
reduce

map

HDFS

HDFS

map

HDFS



Alternative

Mappers send: 
• β(node.rank) divided evenly amount out-links
• (1 – β)(node.rank) to “everyone”
• special case: dead-ends send entire rank to “everyone”

Reducer adds (1/N) x “everyone” rank to each sum



Small Problem

N = 1 billion.  The 
individual masses 

will be small.

Solution: store 
the logs



Log Masses



Why Log Masses Work

• Ranks are in [0,1] -- or, really, (0,1)
• Mathematically, ~ ¼ of all float values are also in this range

• Sign + = ½ , exponent negative = ½ 
• Log(x) : [0,1] => [-∞, 0]

• Now we’re using ½ of the values instead of ¼ 
• It also lets us store MUCH smaller numbers without 

underflow
• Most pages will have a very small but non-zero PageRank

so this is important



Let’s Spark

Problems with MapReduce
• Sending Adjacency lists with each iteration (never changes)
• Needless Shuffling
• Needless Filesystem Access
• Verbose programs
• Each iteration is a new job

• Hadoop has a fairly long start-up time per job



reduce

HDFS

…

map

HDFS

reduce

map

HDFS

reduce

map

HDFS

join

join

join

…

HDFS HDFS

Adjacency Lists PageRank vector

PageRank vector

flatMap

reduceByKey

PageRank vector

flatMap

reduceByKey

Colour Legend
• Cached RDD
• Uncached RDD
• No Shuffle
• Shuffle
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MapReduce vs. Spark



PageRank in Spark
val lines = sc.textFile("the-internet.txt")

val damp = 0.85

val links = lines.map{ s =>

val parts = s.split("\\s+")

(parts(0), parts(1))

}.distinct().groupByKey().cache()

var ranks = links.mapValues(v => 1.0)

for (i <- 1 to iters) {

val contribs = links.join(ranks).values.flatMap{ case (urls, rank) =>

val size = urls.size

urls.map(url => (url, rank / size))

}

ranks = contribs.reduceByKey(_ + _).mapValues((1 – damp) + damp * _)

}



PageRank in PySpark
lines = sc.textFile(“the-internet.txt”).map(lambda r: r[0])

# Loads all URLs from input file and initialize their neighbors.

links = lines.map(lambda urls: parseNeighbors(urls)).distinct().groupByKey().cache()

# Loads all URLs with other URL(s) link to from input file and initialize ranks of them to one.

ranks = links.map(lambda url_neighbors: (url_neighbors[0], 1.0))

# Calculates and updates URL ranks continuously using PageRank algorithm.

for iteration in range(iterations):

# Calculates URL contributions to the rank of other URLs.

contribs = links.join(ranks).flatMap(lambda url_urls_rank: computeContribs(

url_urls_rank[1][0], url_urls_rank[1][1]  # type: ignore[arg-type]

))

# Re-calculates URL ranks based on neighbor contributions.

ranks = contribs.reduceByKey(add).mapValues(lambda rank: rank * 0.85 + 0.15)



PageRank in MapReduce

See Bespin Implementation

I can’t paste it here, it’s 600 lines long



Page Rank ImprovementsPage Rank Improvements
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Remember Search?

Old Search Ranking – TF and DF and logarithms

Flaw: Term Spam.
Set div to not render: Spam spam spam spam spam spam spam spam …

New Search Ranking – Page Rank
New Term Spam:

A SEO walks into a bar pub inn roadhouse saloon tavern alehouse beer house 
beer garden public house drinkery beer ale draught wine…

96



Solution?

Trust what others say about you, not what you say about yourself:

Use link text (and surrounding text) as terms, instead of contents of 
page

Remember “tragic love story” vs “star-crossed romance”?  Solved.

97



It has its own problems, though

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org 98



Forum Spam 
/ Comment 
Spam

What if you go to every page that allows 
posting, and link to your webpage?

Now YouTube, Facebook, CBC News, etc. all 
link to you.  
They have high rank => You have high rank

You also chose the link text, so you’re picking 
your own terms again

99



Spam Farming

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, 
http://www.mmds.org



Spam Farming Techniques

“Spider traps” accumulate rank. 
• Random jumps prevent them from accumulating ALL rank, but it’s still 

boosted by the topology

Technique: 
• Page you want to promote has millions of hidden links to farm pages

• They all accumulate the random-jump weight

• Farm pages all link back to the page you want to promote
• They send all their rank back to the page being boosted
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Solar Radiation 
Random Jumps

Reflected Rays
Links

Thermal Target
Boosted Website



Pages from the spammer’s point of view

• Inaccessible: Most of the internet.  
Spammer cannot edit these pages

• Accessible: Pages that the spammer can 
post links on (forums, comment sections, 
etc.)

• Owned: Pages the spammer directly 
controls
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Accessible Owned

1

2

M

Millions of 
farm pages



MATH!

x: total contribution of accessible pages to t
y: page rank of t (boosted page)
z: page rank of a farm page

2
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Inaccessible

t

Accessible Owned

1

2

M

Millions of 
farm pages

This term is very small, 
so ignored

3.6x for 𝛽 = 0.85
Spider trap amplifies 

incoming links For 𝛽 = 0.85, 0.45M/N
Grows linearly with M



Solution to Link Spam

• Ignore links tagged as “nofollow”
• Convince forums, news sites, etc. to insert “nofollow” to all links 

posted in comments

Added Benefit: A researcher (university website, high rank) can link to a 
page (to use as an example of term spam) and not boost its ranking

2

106

Makes this 0.  
Solved?



How to Solve 
a Problem like 
Spam Farms
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Solution to Link Farms

What’s the solution?  

It’s the topic of the Graph assignment!

In Personalized Page Rank, spam farms don’t work.    Why?
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What to use for “Source Nodes”

We should identify “trustworthy” pages
Easy to say…

What’s trustworthy?
Domains with strict entry requirements?
.edu, .gov, etc.
(UW doesn’t make the cut…)
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Idea

Collect a sampling of webpages (seed pages)

Oracle (Human) sorts the trustworthy from 
the spam.
• Expensive
• Keep the set as small as possible
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Idea

Use the “good” pages as the source 
nodes for personalized page rank

Small change: Each page in trust set is 
initialized to 1:

Trust sums to M instead of to 1

After iteration, all pages have a trust 
factor of between 0 and 1

Pick a threshold and mark all pages 
below that as spam
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Justification

• Trustworthy pages mostly only 
link to other trustworthy pages

• Spam pages mostly only link to 
other spam pages

• By only teleporting to known 
good pages, only the “good” 
partition accumulates significant 
trust
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Conflicting Interests

• The more seed pages there are, the most time and effort 
needed to curate

• The fewer seed pages there are, the less trust there is in the 
system

• Threshold will need to be lower, more spam pages slip through

• Need to pick seed pages that are highly likely to point to 
“most” of the other good pages

• Your Trust is roughly proportional to your link distance from a 
“good” seed page.
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Picking 
Good 
Seeds

• Assumption: even with link farms, bad pages 
won’t be in the top k

Pick the top k pages by Page Rank

• Can’t get a .edu, .mil, .gov domain just by 
buying one!

• But, in fact, you can be trustworthy without 
being the US Government or a US University

Use Trusted Domains

Scandalous claim!



Bootstrapping Trust

• If your seed set is small, will miss a lot of trustworthy sites
• Alternate View: You will only catch a small number of spam farmers

• BUT: Anything that you find is probably pretty trustworthy
• Candidates to be added to the trusted set.

1. Run PageRank
2. Select top pages as seed (and verify trustworthiness)
3. Run TrustRank
4. Set threshold low enough to avoid false positives
5. Remove spam pages from graph
6. Goto Step 1
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Alternative – Spam Mass

= PageRank of Page p
= PageRank of Page p, but random jumps only lead to Trusted pages

= – = Contribution of “low trust” pages to p’s rank

Sp = = Spam Mass (Fraction of p’s rank that’s from “low trust” pages)

The higher your Spam Mass, the more likely you are to be spam
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More 
Variations on 
a Theme

Next Week – “Topic Identification”

A page might have high rank because 
it’s important to a particular topic

Is it important to all topics?

ESPN might be popular for sports 
news.  Should it show up on a search 
about Greek history?
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Topic-Specific Page Rank

Instead of the teleport set being all pages, it’s all pages on a given 
topic T

Where do find this set?

• DMOZ?
• High Page-Rank pages, classified using ML (Topic Classification) ?

In other words, the same thing as Multi-Source Personalized Page 
Rank
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DMOZ is dead, long live 
Curlie



Further Tweaks
The random-teleport set can be weighted without breaking 
anything

If a total of X mass teleports then 
• Unweighted: Every Source Node gets X / M
• Weighted: Source Node Si gets wiX / W  (Where W is the sum of 

all wi)

You can use regular Page Rank as the weights.
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